196 research outputs found

    Non-Random Integration of the HPV Genome in Cervical Cancer

    Get PDF
    HPV DNA integration into the host genome is a characteristic but not an exclusive step during cervical carcinogenesis. It is still a matter of debate whether viral integration contributes to the transformation process beyond ensuring the constitutive expression of the viral oncogenes. There is mounting evidence for a non-random distribution of integration loci and the direct involvement of cellular cancer-related genes. In this study we addressed this topic by extending the existing data set by an additional 47 HPV16 and HPV18 positive cervical carcinoma. We provide supportive evidence for previously defined integration hotspots and have revealed another cluster of integration sites within the cytogenetic band 3q28. Moreover, in the vicinity of these hotspots numerous microRNAs (miRNAs) are located and may be influenced by the integrated HPV DNA. By compiling our data and published reports 9 genes could be identified which were affected by HPV integration at least twice in independent tumors. In some tumors the viral-cellular fusion transcripts were even identical with respect to the viral donor and cellular acceptor sites used. However, the exact integration sites are likely to differ since none of the integration sites analysed thus far have shown more than a few nucleotides of homology between viral and host sequences. Therefore, DNA recombination involving large stretches of homology at the integration site can be ruled out. It is however intriguing that by sequence alignment several regions of the HPV16 genome were found to have highly homologous stretches of up to 50 nucleotides to the aforementioned genes and the integration hotspots. One common region of homologies with cellular sequences is between the viral gene E5 and L2 (nucleotides positions 4100 to 4240). We speculate that this and other regions of homology are involved in the integration process. Our observations suggest that targeted disruption, possibly also of critical cellular genes, by HPV integration remains an issue to be fully resolved

    Novel Homoleptic and Heteroleptic Pt(II) β‐oxodithiocinnamic ester Complexes: Synthesis, Characterization, Interactions with 9‐methylguanine and Antiproliferative Activity

    Get PDF
    Abstract Three new series of homoleptic and heteroleptic platinum(II) β‐oxodithiocinnamic ester complexes, [Pt(L1–L9) 2 ], [Pt(L1–L9)(DMS)Cl] and [Pt(L1–L9)(DMSO)Cl], were synthesized and characterized using elemental analysis, mass spectrometry, and different NMR spectroscopy ( 1 H, 13 C{ 1 H} and 195 Pt). The β‐oxodithiocinnamic esters coordinate towards the platinum(II) centre as O,S‐bidentate chelating ligands. The structures of HL3, [Pt(L2) 2 ], [Pt(L6)(DMS)Cl] as well as [Pt(L2)(DMSO)Cl] have been confirmed through the X‐ray crystallography, where the platinum(II) complexes exhibit a slightly distorted square planar geometry. In this article, we also investigated the solvolysis of three representative Pt(II) complexes, as well as the interaction with 9‐methylguanine as a DNA model system, by utilizing the LC‐ESI‐MS technique. A selection of the complexes was assessed for their use as anticancer agents, and cytotoxicity assays with these complexes showed modest toxicity on both Cisplatin sensitive and resistant ovarian cancer cell lines. However, the compounds cytotoxicity was not affected by the Cisplatin resistance mechanisms and a specific selection of the ligands may modify the cell line specificity.imag

    Highly Cytotoxic Osmium(II) Compounds and Their Ruthenium(II) Analogues Targeting Ovarian Carcinoma Cell Lines and Evading Cisplatin Resistance Mechanisms

    Get PDF
    (1) Background: Ruthenium and osmium complexes attract increasing interest as next generation anticancer drugs. Focusing on structure-activity-relationships of this class of compounds, we report on 17 different ruthenium(II) complexes and four promising osmium(II) analogues with cinnamic acid derivatives as O,S bidentate ligands. The aim of this study was to determine the anticancer activity and the ability to evade platin resistance mechanisms for these compounds. (2) Methods: Structural characterizations and stability determinations have been carried out with standard techniques, including NMR spectroscopy and X-ray crystallography. All complexes and single ligands have been tested for cytotoxic activity on two ovarian cancer cell lines (A2780, SKOV3) and their cisplatin-resistant isogenic cell cultures, a lung carcinoma cell line (A549) as well as selected compounds on three non-cancerous cell cultures in vitro. FACS analyses and histone γH2AX staining were carried out for cell cycle distribution and cell death or DNA damage analyses, respectively. (3) Results: IC50 values show promising results, specifically a high cancer selective cytotoxicity and evasion of resistance mechanisms for Ru(II) and Os(II) compounds. Histone γH2AX foci and FACS experiments validated the high cytotoxicity but revealed diminished DNA damage-inducing activity and an absence of cell cycle disturbance thus pointing to another mode of action. (4) Conclusion: Ru(II) and Os(II) compounds with O,S-bidentate ligands show high cytotoxicity without strong effects on DNA damage and cell cycle, and this seems to be the basis to circumvent resistance mechanisms and for the high cancer cell specificity

    Novel Nickel(II), Palladium(II), and Platinum(II) Complexes with O , S Bidendate Cinnamic Acid Ester Derivatives:: An In Vitro Cytotoxic Comparison to Ruthenium(II) and Osmium(II) Analogues

    Get PDF
    (1) Background: Since the discovery of cisplatin’s cytotoxic properties, platinum(II) compounds have attracted much interest in the field of anticancer drug development. Over the last few years, classical structure–activity relationships (SAR) have been broken by some promising new compounds based on platinum or other metals. We focus on the synthesis and characterization of 17 different complexes with β-hydroxydithiocinnamic acid esters as O , S bidendate ligands for nickel(II), palladium(II), and platinum(II) complexes. (2) Methods: The bidendate compounds were synthesized and characterized using classical methods including NMR spectroscopy, MS spectrometry, elemental analysis, and X-ray crystallography, and their cytotoxic potential was assessed using in vitro cell culture assays. Data were compared with other recently reported platinum(II), ruthenium(II), and osmium(II) complexes based on the same main ligand system. (3) Results: SAR analyses regarding the metal ion (M), and the alkyl-chain position (P) and length (L), revealed the following order of the effect strength for in vitro activity: M > P > L. The highest activities have Pd complexes and ortho-substituted compounds. Specific palladium(II) complexes show lower IC 50 values compared to cisplatin, are able to elude cisplatin resistance mechanisms, and show a higher cancer cell specificity. (4) Conclusion: A promising new palladium(II) candidate (Pd3) should be evaluated in further studies using in vivo model systems, and the identified SARs may help to target platinum-resistant tumors

    p53 mutant His175 identified in a newly established fallopian tube carcinoma cell line secreting interleukin 6

    Get PDF
    AbstractFallopian tube carcinoma is a lethal gynecologic malignancy. Etiologic factors are unknown. No experimental data on molecular alterations exist so far. For an in vitro model, we established the permanent human tubal carcinoma cell line FT-MZ-1. The median doubling time was 14 days with 24.2% in S phase. A point missense mutation of the p53 tumor suppressor gene resulting in the His175 mutant was identified. Aberrant p53 protein accumulated in nucleus and cytoplasm. FT-MZ-1 substantially secreted interleukin 6 (Il-6) coinciding with the inactivation of p53 as a transrepressor on the Il-6 gene promoter

    Differences in Stability of Viral and Viral-Cellular Fusion Transcripts in HPV-Induced Cervical Cancers

    Get PDF
    HPV-DNA integration results in dysregulation of viral oncogene expression. Because viral-cellular fusion transcripts inherently lack the viral AU-rich elements of the 3’UTR, they are considered to be more stable than episome-derived transcripts. The aim of this study is to provide formal proof for this assumption by comparing the stability of viral early transcripts derived from episomal and integrated HPV16 DNA, respectively. Full-length cDNA of three fusion transcripts comprising viral and cellular sequences in sense orientation were amplified and cloned into the adeno-viral-vector pAd/CMV/V5-DEST. The most abundant HPV16 oncogene transcript E6*I-E7-E1vE4-E5 with and without 3’UTR, served as reference and control, respectively. Human primary keratinocytes were transduced using high titer virus stocks. qRT-PCR was performed to determine mRNA stability in relation to GAPDH in the presence of actinomycin-D. In four independent transduction experiments, all three viral-cellular fusion transcripts were significantly more stable compared to the episome-derived reference. Among the three viral-cellular fusion transcripts the most stable transcript was devoid of the instability core motif “AUUUA”. Unexpectedly, there was no significant difference in the stability between the episome-derived transcripts either with or without 3’UTR, indicating that the AU-rich elements of the 3’UTR are not contributing to RNA stability. Instead, the three “AUUUA” motifs located in the untranslated region between the viral E4 and E5 genes may be responsible for the instability. This is the first report showing that authentic viral-cellular fusion transcripts are more stable than episome-derived transcripts. The longer half-life of the fusion transcripts may result in increased levels of viral oncoproteins and thereby drive the carcinogenic process

    Adding epoetin alfa to intense dose-dense adjuvant chemotherapy for breast cancer : randomized clinical trial

    Get PDF
    BACKGROUND: The AGO-ETC trial compared 5-year relapse-free survival of intense dose-dense (IDD) sequential chemotherapy with epirubicin (E), paclitaxel (T), and cyclophosphamide (C) (IDD-ETC) every 2 weeks vs conventional scheduled epirubicin/cyclophosphamide followed by paclitaxel (EC→T) (every 3 weeks) as adjuvant treatment in high-risk breast cancer patients. The objective of this study was to evaluate the safety and efficacy of epoetin alfa in a second randomization of the intense dose-dense arm. METHODS: One thousand two hundred eighty-four patients were enrolled; 658 patients were randomly assigned to the IDD-ETC treatment group. Within the IDD-ETC group, 324 patients were further randomly assigned to the epoetin alfa group, and 319 were randomly assigned to the non-erythropoiesis-stimulating agent (ESA) control group. Primary efficacy endpoints included change in hemoglobin level from baseline to Cycle 9 and the percentage of subjects requiring red blood cell transfusion. Relapse-free survival, overall survival, and intramammary relapse were secondary endpoints estimated with Kaplan-Meier and Cox regression methods. Except for the primary hypothesis, all statistical tests were two-sided. RESULTS: Epoetin alfa avoided the decrease in hemoglobin level (no decrease in the epoetin alfa group vs -2.20g/dL change for the control group; P < .001) and statistically significantly reduced the percentage of subjects requiring red blood cell transfusion (12.8% vs 28.1%; P < .0001). The incidence of thrombotic events was 7% in the epoetin alfa arm vs 3% in the control arm. After a median follow-up of 62 months, epoetin alfa treatment did not affect overall survival, relapse-free survival, or intramammary relapse. CONCLUSIONS: Epoetin alfa resulted in improved hemoglobin levels and decreased transfusions without an impact on relapse-free or overall survival. However, epoetin alfa had an adverse effect, resulting in increased thrombosis

    RUNX3 transcript variants have distinct roles in ovarian carcinoma and differently influence platinum sensitivity and angiogenesis

    Get PDF
    The prognosis of late-stage epithelial ovarian cancer (EOC) patients is affected by chemotherapy response and the malignant potential of the tumor cells. In earlier work, we identified hypermethylation of the runt-related transcription factor 3 gene (RUNX3) as a prognostic biomarker and contrary functions of transcript variants (TV1 and TV2) in A2780 and SKOV3 cells. The aim of the study was to further validate these results and to increase the knowledge about RUNX3 function in EOC. New RUNX3 overexpression models of high-grade serous ovarian cancer (HGSOC) were established and analyzed for phenotypic (IC50 determination, migration, proliferation and angiogenesis assay, DNA damage analysis) and transcriptomic consequences (NGS) of RUNX3 TV1 and TV2 overexpression. Platinum sensitivity was affected by a specific transcript variant depending on BRCA background. RUNX3 TV2 induced an increased sensitivity in BRCA1wt cells (OVCAR3), whereas TV1 increased the sensitivity and induced a G2/M arrest under treatment in BRCA1mut cells (A13-2-12). These different phenotypes relate to differences in DNA repair: homologous recombination deficient A13-2-12 cells show less γH2AX foci despite higher levels of Pt-DNA adducts. RNA-Seq analyses prove transcript variant and cell-line-specific RUNX3 effects. Pathway analyses revealed another clinically important function of RUNX3—regulation of angiogenesis. This was confirmed by thrombospondin1 analyses, HUVEC spheroid sprouting assays and proteomic profiling. Importantly, conditioned media (CM) from RUNX3 TV1 overexpressing A13-2-12 cells induced an increased HUVEC sprouting. Altogether, the presented data support the hypothesis of different functions of RUNX3 transcript variants related to the clinically relevant processes—platinum resistance and angiogenesis

    Comprehensive genetic assessment of the ESR1 locus identifies a risk region for endometrial cancer

    Get PDF
    Excessive exposure to estrogen is a well-established risk factor for endometrial cancer (EC), particularly for cancers of endometrioid histology. The physiological function of estrogen is primarily mediated by estrogen receptor alpha, encoded by ESR1. Consequently, several studies have investigated whether variation at the ESR1 locus is associated with risk of EC, with conflicting results. We performed comprehensive fine-mapping analyses of 3633 genotyped and imputed single nucleotide polymorphisms (SNPs) in 6607 EC cases and 37 925 controls. There was evidence of an EC risk signal located at a potential alternative promoter of the ESR1 gene (lead SNP rs79575945, P=1.86x10(-5)), which was stronger for cancers of endometrioid subtype (P=3.76x10(-6)). Bioinformatic analysis suggests that this risk signal is in a functionally important region targeting ESR1, and eQTL analysis found that rs79575945 was associated with expression of SYNE1, a neighbouring gene. In summary, we have identified a single EC risk signal located at ESR1, at study-wide significance. Given SNPs located at this locus have been associated with risk for breast cancer, also a hormonally driven cancer, this study adds weight to the rationale for performing informed candidate fine-scale genetic studies across cancer types
    corecore